Weak Law of Large Numbers for Hybrid Variables Based on Chance Measure
نویسندگان
چکیده
Based upon previous studies on laws of large numbers for fuzzy, random, fuzzy random and random fuzzy variables, We go further to explore weak law of large numbers(WLLN) for hybrid variables comprising fuzzy random variables and random fuzzy variables. we mainly prove Chebyshev WLLN, Poisson WLLN, Bernoulli WLLN, Markov WLLN and Khintchin WLLN for hybrid variables based on chance measure.
منابع مشابه
SOME PROBABILISTIC INEQUALITIES FOR FUZZY RANDOM VARIABLES
In this paper, the concepts of positive dependence and linearlypositive quadrant dependence are introduced for fuzzy random variables. Also,an inequality is obtained for partial sums of linearly positive quadrant depen-dent fuzzy random variables. Moreover, a weak law of large numbers is estab-lished for linearly positive quadrant dependent fuzzy random variables. Weextend some well known inequ...
متن کاملOn the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables
In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.
متن کاملMARCINKIEWICZ-TYPE STRONG LAW OF LARGE NUMBERS FOR DOUBLE ARRAYS OF NEGATIVELY DEPENDENT RANDOM VARIABLES
In the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. Let be a double sequence of pairwise negatively dependent random variables. If for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). In addition, it also converges to 0 in ....
متن کاملA Note on the Strong Law of Large Numbers
Petrov (1996) proved the connection between general moment conditions and the applicability of the strong law of large numbers to a sequence of pairwise independent and identically distributed random variables. This note examines this connection to a sequence of pairwise negative quadrant dependent (NQD) and identically distributed random variables. As a consequence of the main theorem ...
متن کاملThe weak and strong laws of large numbers
converges in probability to 0. A strong law of large numbers is a statement that (1) converges almost surely to 0. Thus, if the hypotheses assumed on the sequence of random variables are the same, a strong law implies a weak law. We shall prove the weak law of large numbers for a sequence of independent identically distributed L random variables, and the strong law of large for the same hypothe...
متن کامل